Thoughts on Automobility LA

Day one of the 2019 Automobility LA show might be best summed up in one word “Karma.”  The first media day is basically a series of thirty minutes (or more) technology update panels.  I find it interesting on a number of levels, including what really is new and what is status of the field.

For the most part, especially if you have attended a number of these over the years, you take what is said with a grain of salt and consider it a lot of marketing hype designed to stimulate discussion, create awareness, and in more cases than not, investor interest.

My ‘take-aways’ from today include:

  • The new CEO of Faraday (he was the CEO of Byton last year) sees the real financial profitability coming from the interconnected digital experience, rather than through the sales of their FF91 (September 2021) at $150-200k, or of their FF81 after that at $60-80k.
  • The “living space” experience of future semi-autonomous and ultimately, fully autonomous (levels 4 and 5) vehicles is the ‘hot’ topic focus of many presenters here.
  • Critical is figuring out how to integrate all of the vehicle voice assistants, such as OEM versions and Alexa, along with the artificial intelligence (AI) dynamic data base so that it is a seamless experience for the end user.
  • Figuring out how to gain the trust in the general public of autonomous vehicles (AVs)

One split in thinking and focus that I feel isn’t being given enough effort is that there really are two very different AV ‘roads’ that need to be integrated for this future disruption to succeed.  That is, one faction sees AVs as ultimately the replacement for the personal car as simple a means to primarily get from A to B, while the other is attempting to create a whole new means of experience that people will just want to do because of the experience.  The later are focused on integrating lots of monitors (screens), high end audio, augmented reality, etc.  An overriding issue for both factions is what the respective impact will be on reducing congestion in urban environments.

Continuing issues include lack of standardized intra and inter vehicle communication (software), privacy of the ever-expanding data base on each end user (incrementally increasing under the 5G capabilities), and lack of interstate DMV regulation for AVs.

It still appears that the near future of AVs will be restricted to proprietary lanes on highways and in urban environments, where human driven vehicles are not allowed to drive.  Under this set-up, I believe we will see a significant reduction in accidents and deaths.

Oh, and why this first day is best summed up as Karma? The simple answer is that Karma had their FF91 there, as well as functioning protypes of their future vision cars the SC1 and SC2 (convertible and hardtop respectively, each with ‘scissor’ doors), and their Revero GTS model.  Alternatively, as a bit of tongue-in-cheek, perhaps the future of AVs is just karma personified…

More to come.  In the interim, what are your thoughts?

Product Review- Detailing and wrenching aids.

This review is of the three new products from MYCHANIC. Covered are their Detailing Rig, their Sidekick Stool-KK2 and their POD Light, all were provided to me by Delk, distributer for the MYCHANIC brand.

Looking first at the Detailing Rig (Model #52810).  It comes with all the necessary components in a box:

I used a soft mallet, blade and Philips screwdrivers, 17mm wrench and socket, to assemble following the easy to follow graphic (only) instructions.  It took under 30 minutes to assemble. 

The only thing I would recommend MYCHANIC add to their graphic instructions is in the third assembly step: to make sure the holes are lined up in the bottom tray with the frame holes, before tightening the four “A” 17 mm bolts that secure the two halves of the bottom tray.  I found the holes were fine on one side, but slightly off on the opposite side.  If they are off slightly, you will not be able to fit the studs on the wheel assembles through both the frame and the attached tray.

The assembled Detailing Rig is extremely well constructed and thought through.  It lists a 350 pound/ 158 kg capacity, and country of origin being China.  It comes with a one-year limited warranty. It lists at $109.99.

The Detailing Rig comes equipped with a number of useful options including the nicely sized soft wheels, lots of storage under the seat, spray bottle hanging racks, a wash bucket with removable grit trap tray, and of course a bottle holder.  I particularly like that the seat can be lifted off of its studs and put on the floor to use as a kneeling pad.  Very useful for working on the wheels, etc.

I found sitting on the unit a perfect height for detailing cars, as you roll effortlessly around the car.

Moving to the Sidekick Stool- SK2 (Model #52875).  It comes with all the necessary components in one box:

You need a Phillips head screen driver, 17mm wrench and socket to assemble following narrative text instructions with one graphic.  It is straight forward and easy to assemble, taking about 20 minutes.

The assembled Sidekick Stool- SK2 is a heavy-duty well-designed unit.  However, I would suggest two modifications in future iterations of the Sidekick: it has an adjustable height seat, but requires you to fully remove and reattach the four 17mm bolts, washers and locking nuts to accomplish this.  It would be much more convenient if you could adjust the seat by an easier process.  The other modification, would be to enable you to remove the seat (cushion) in a fashion similar to what MYCHANIC has done with the Detailing Rig.  I found there were times when working with the Sidekick, I needed to kneel for the task as hand.

The Sidekick has surprisingly convenient storage areas including drawers

And a drill holder/holster along with side ‘cubbies’

It includes a removable tray (that stores under the seat area), which includes a built-in slot in the handle to hold your iPad or tablet so you can play how to video for the project you are working on.

The assembled Sidekick is rugged, well-constructed and a very practical means of bringing your tools to the project.  It rolls on four soft large caster wheels.  It lists a 350 pound/ 158 kg capacity, and country of origin being China.  It comes with a two-year limited warranty. It lists at $109.99.

Let me now shed some light (sorry, couldn’t help myself) on the MYCHANIC POD Light (Model #52811).

This is a compact, very well made and relatively bright ultra-portable light.  It is rated at 250 lumens, and comes with the 3 AA batteries.  The batteries can power it, on the high output setting, for approximately 7 hours continuous use. The POD Light is imported, lists for $24.99 and comes with a one year warranty.

The POD Light includes a magnetic base that allows the light to be rotated 360 degrees, and the base itself adheres to anything metallic. The unit has a high and low output setting.  In addition to using it with its magnetic base, it can easily be hand held or rested near the area you are wanting to illuminate (if there is no metal for the base).

I found the unit just right for shooting light down in the engine wheel or for example, checking how much life is left on a brake pad.  The only thing that surprised me about using the POD Light, is that modern cars have very little steel often in the engine hood or around the engine bay, to enable the base to be magnetically stuck.

The only minor suggestion I have that would make it a bit more convenient, would be to eliminate the two small Philip screws that hold the battery case cover in place. It already has a sufficient built-in catch to secure the cover, and in turn, the entire case is inside of the two halves of the unit, when you screw them together after inserting the batteries.

In summary, MYCHANIC has three winning products that make detailing and wrenching even more enjoyable for ‘us gearheads.’


If you have a question, please feel free to ask! 

Technology Designed To Get You To Say Good-bye To Privately Owned Cars.

[Hold on there fellow gearheads, there may be some validity in this statement 😃 ]

By Jeff Daum, Ph.D., PPA Photojournalist, Technology & Product Analyst

Interview with Justin Rees (JR), Founder & CEO Ride Systems, Kelly Rees (KR), President Ride Systems, and Ilya Rekhter (IR), CEO DoubleMap.

Backstory: Ride Systems and DoubleMap had just merged at the time of this interview, bringing together two companies with a proven track record of providing safe, fact-based real-time information on transportation alternatives for getting from point A to point B.  This includes public transit and on-demand (Uber, Lyft etc.) transit.  The combined data bases comprise public transit riders, corporations (employee vans), airports, universities and hotels.  While now operating under one holding company, both will maintain their respective brick and mortar headquarters.  Both companies have a free app (Ride Systems and DoubleMap GPS) allowing the user to see alternatives available to get from A to B either entirely on one service or in combination, along with real-time indication of when the option will be at a specific location.

(left to right) Ilya Rekhter, Kelley Rees, Justin Rees

JD Let’s start with a statement by you Justin: “Our services offer a quantum leap forward enabling everybody to say good-bye to privately owned cars soon.” Would you please put that in perspective?

JR Timing is everything, millennials are delaying the purchases of large items, cars and houses for example.  They also want to live in big urban areas.  So, they are already forgoing owning multiple cars or even any car, for more liberating options.  The other side of that is that you are seeing even the automakers get into the services business.  They want to be mobility companies.  As you saw at CES, big companies are investing heavily in autonomous cars, sensors, and smart cities. Those companies are trying to shift from being a commodity producing company into service and mobility sector. 

So, you are seeing transportation sharing options greatly increasing and providing short, medium and long-range alternatives, from scooters to ride share, to on demand to public transit.

IR To piggy back on what Justin is saying, it starts with that family that has one car and thinking about buying a second car, the easier we can make it for them to ride public transit and not need to buy the second car, the more it will continue trending that way.  Then you take it and make it more personalized with more options including public transit, and combine in one place, and easy to use app, those options to get from point A to point B and more and more people will use it.

JR So why do people hesitate to use the other modes of transportation? It’s the lack of confidence in public transit, for example, where is it? Will it ever get here?  How long do I have to wait?  All those questions prevent people from feeling comfortable in using public transit.  You have to have confidence in it to want to use it.  Same thing is true for other alternatives, such as scooters or bikes, on demand cars- you gain confidence if you know where it is and how long you have to wait for it.

Having the information available to them is where we come in.  We own the data in that middle market, we are in seven hundred plus locations.   We provide real time information for public transit and other modes of transportation.  Big cities, small cities, corporations, medical centers, universities.  As a result, we have scooter companies, car sharing companies and automotive companies come to us and say since you are already in all of these places if we team up, instead of launching in just a few select places, we can deploy on a large scale using your existing network and contracts with the cities.

JD: Is your audience the same for the public transit as it is for on demand rides?

IR For us it started with the transit riders, but now they can see in the same app, a mesh network to get from point A to point B, an alternative means to cover the distance from where they live to the bus, or from the bus to their ultimate destination, or even not to take the bus at all but one of the other options.

JD But will the individual who uses an Uber or Lyft, now decide because of your app, to use public transit? What is the incentive?

IR Perhaps seeing there are clear options that can save money, particularly if time isn’t critical.  The ride share companies are interested in being part of our app to get more ‘eyeballs’ to see their services.  Also, it depends on what a particular city has in terms of arrangements with different ride share companies.  If they have agreements with for example, both Uber and Lyft, then both would be part of our app for that city.

JD Are taxis favorable to your app?

IR Using Dallas as an example, the city has brokered a deal with Uber and Lyft, as well as the taxis.  That is a differentiation for our service, we don’t take a position pro one service or another.  The taxis in Dallas have our software in their cars, so they can serve more as an on-demand option.

JR The option comes down to the confidence, do I take a scooter to get to the bus, take an Uber to get to the bus, or walk to the bus.  Do I even want to take a bus, is there another option to get downtown?  They will find all those options through our app.  We have the platform where all those options can be made available.  It is all about options, giving the people options to choose from, the freedom to choose how they want to do it.  Of course, with your own car, you can hop in it and go where and when you want, but you have the cost of the car, getting there, garaging or parking it, etc.  If you don’t have a car, the perception has been that you don’t have freedom.  We provide that freedom.

Of course, it will take some time, but people are already doing it- the millennial crowd is already doing it.   We think people are anxious to find a better way to get around.  Traffic is as bad as it has ever been, parking and the cost of owning a car is going up, as is the related stress.  These technologies of making people comfortable to use alternative modes of transportation will help alleviate a lot of that stress.

JD You had mentioned the OEMs are interested in it.  Of course, they are focused on the shift in buying habits and have started offering their own alternatives.  You have Volvo, Lincoln and Cadillac offering new types of quick leases, no obligation, easy swap from one model to another and totally inclusive monthly payments covering the car, the insurance, maintenance and swap potential.  For example, Volvo I think is $500 per month to virtually any qualified individual where they offer the option.  Is this in competition to your service?

IR That is actually music to our ears, we don’t own any of our vehicles except for our pending start of our Tesla X car share service fleet.  The reasons the OEMs are starting these new types of leases is because they want their cars on the road. We have the advantage of offering the use of any of those vehicles as well.  It will be a natural complement.

JD But if you own a fleet, won’t you be seen as pushing your cars vs other options?

IR I don’t think it is a question of one or the other, it is a question of providing as many options as possible.

KR Let’s back up a do a little bit of background on the company.  That might help paint a picture why it won’t be a big deal.  For example, some of our biggest clients are big corporations, closed campuses, etc.  They are the perfect place to start the car share aspect of our business, a specific program for a specific client.

IR For example, where a client may have a fleet of several hundred vehicles and thousands of employees, they can use our app to create on demand vs scheduled rides.

JR Another example, for a client in a big city, we are able to merge all different types of transportation modes (short, medium and long range) and make them available to their employees in one app.  Instead of the client having to go to each of the services and try and negotiate and integrate, we do that for them. Cities are hard to get into on large scale because of the bid process and because cities have little incentive to share information with the specific companies in their area. Because of this we are already involved with a lot of these cities, we offer our clients and strategic partners that connection. That ranges from tracking buses and shuttles for commuters to launching new offerings to the communities members in the area like scooters and car share programs.

JD Let’s segue into details on your app.

KR It is more than an app, it also includes hardware.

JR I look at it as three pillars- the first one is what we are known for, our mobile application.  It is free.  The second pillar is in the vehicle.  In buses, most are a step back in time, with clickers for counting passengers, manually changing the route sign, etc. We install hardware inside the bus that takes over all these functions and frees up the driver to focus on safety and driving.  The third pillar is that the hardware we install integrates these functions on the bus and sends real time updates to our servers where we do business intelligence. That is then reflected for example, in our app, showing current position, time to next stop, etc., as well as real time passenger load, a more efficient routing and use of buses.

IR It is really the analysis and use of that data for both the bus (or car company) and user that is key.  For example, a user can look at passenger load and decide to take a different bus, or if the next bus has a bike rack installed, or can pick up a person in a wheelchair.  While on the bus, they can use the app to order a car to pick them up when they arrive.

We also have numerous capabilities we can build into the onboard equipment, such as badge readers, WiFi capabilities, etc.

JD Where are the buses that you have this technology currently running?

JR For example, Reno, University of Nevada, here in Las Vegas, Arrow Stage Lines, a charter bus service, Houston, Tulsa, really in all 50 states., Guam, Mexico and Australia. We haven’t done a lot of press so it isn’t well known, but we are the single largest provider of this type of technology across the world.  Our service sounds like an app, but it is like the tip of an iceberg in terms of the full range of services we provide.

JD Would you talk a bit about your new roles now as a merged organization of your two companies?

JR Merging makes a lot of sense from a business perspective.  We have been fairly selfless in figuring out what will be best for our employees in both companies, our clients, and how to not disrupt everything.  I will be the CEO, Ilya has the same abilities but he also is one of the best guys when it comes to strategies, and numbers and sales and will be President, so that will be his focus, Peter (SerVass) is always about 10 steps ahead of us in looking into the future, he worked very hard on this merger, and will be the strategist.  Kelly, her focus will be in marketing and press.

IR We are fortunate in that both companies have very capable and strong individuals. Culture has been very important to us.  We have both been self-funded and profitable.  This year we are projecting to be an 18 to 19 million dollars revenue company.  Basically, blending what DoubleMap and Ride Systems has done really well and making one big win.

JD Do you think you will stay self-funded?

JR We are doing great the way that we are, but if the right opportunity comes along, we won’t turn it down, but we are confident in our ability to do this.  This merger enables us to take a risk and really grow the businesses to the next level.

IR The key is that both companies came in with clean balance sheets and profitable.  We have the funding to grow organically.

JR So we are open to the option, we don’t want to restrict our growth if the issue is capital.

JD In summary, what would you like to emphasize?

JR Well, we are the largest real time transit information company in the world, no one has as many and as much variety of clients in as many locations as we do.

IR To our existing clients, it is important to know, there is no turnover.  We are taking the best from both companies and combining it.

JD You handle a lot of data obviously, what type of security and back up do you have?

JR That’s a really great question. A big and important topic for people.  We have secure data centers, AWS with Amazon Web Services, IBM secure data centers, all sorts of redundancy and backups.  We take security around personal information very seriously. 

JD Anything else you would like to add?

JR We are just thrilled to make this merger finally happen and excited for what it means for the people of our two companies, and for our clients and future clients.  The sky is the limit.

IR We are both proverbial garage startups.  To grow it to this, we couldn’t be happier.  We are going to keep the two (apps) brands independent, but integrate across them as appropriate.

KR Looping back to where you opened this, needing to own a car versus wanting to own a car are two different things.  The automotive enthusiast, the hobbyist, the love of driving is different from having to commute from A to B.  As the information (transit options) is out there, we believe more and more people will be giving up their cars.

JD It has been fascinating learning the details, and meeting all of you. Thank you for taking the time and sharing your enthusiasm.  Continued success!

Copyright 2019 © Jeff Daum

You’ll get a charge out of this.

This review is of the newestCTEK charger/maintainer.  It is the “CT5Time to Go” CTEK, and was provided to me by CTEK.

For those of you not familiar with CTEK, they are a major OEM branded car battery charger manufacturer, for example Alfa Romero, Arctic Cat, Audi, BMW, Camaro, Corvette, Ferrari, Husqvana, Rolls-Royce, Saab and Yamaha.  They also enjoy a healthy portion of the after-market car battery chargers under the CTEK label.

I have been using CTEKs for about 15 years for maintaining my automotive batteries.  I started with the Multi US 3300, then the MUS 4.3.  I actually never had one stop working properly (even after a couple of them were dropped), but I added as their technology improved, or I simply needed an additional charger for another of my cars.

CTEK chargers (non-OEM) typically come packaged with two ways to connect the charger to your car battery: ‘alligator’ clips to temporarily connect directly to the battery terminals, and what they call the Comfort Connect which has bolt connector eyelets that you can permanently connect to the respective terminal stud nut.  If you do it this way, the Comfort Connect has a secure connector with a sealing flap, that connects easily to the output cable from the CTEK unit when you need it.  A third option, especially for cars with dedicated charging accessory outlets like the Corvette Stingray has, is a Comfort Connect Cig-Plug.  I actually use all three methods for different vehicles- permanent eyelet to the battery terminals on one of my vehicles that doesn’t have easy access to the battery and no live accessory plug, the alligator clips on another car where it doesn’t have a convenient live accessory plug, but does have it’s battery easily accessed in the engine compartment, and the Cig-Plug solution for my Stingray with the dedicated charging port in the trunk.

Regardless of which method you use to connect to your car (all three methods are interchangeable via the Comfort Connect end on the output cable), the unit works the same way.

So, this brings us to the latest CTEK CT5 Time To Go. 

The unit it self looks fairly similar to the MUS 4.3, as can be seen in this picture with the Time To Go on top.

All CTEK units for the most part perform similar tasks: charging regular wet lead batteries and AGM (gel batteries), intelligently maintaining the proper float charge regardless of how long the unit is attached to the battery, automatic desulphation program, and reconditioning of batteries.  The newest feature of the CTEK CT5 Time To Go, is the LED indication of the time remaining from a depleted battery until you can attempt to start the car “TRY”, or until it is ready to use “GO” and at 100% “CARE.”  It also incorporates temperature compensation to adjust the optimum charge based on the battery temperature.

Here are images reflecting the unit unplugged, LEDs on initial plug in, and at “GO” as well as “CARE.”

Using the CTEK is straight forward, if you are connecting via the supplied alligator clips or eyelets you are set to go out of the box. 

If you are going to attach via a dedicated charging accessory you need to purchase the optional Cig-Plug.

The following shows the CTEK connected in a Corvette Stingray, at the dedicated charging accessory port using the Cig-Plug.  You can also see the Comfort Connect, between the Cig-Plug option and the power cable from the unit.

Pricing: the CTEK CT5 Time To Go lists at $113.99 and the Cig-Plug lists at $11.99.  However, you can usually find deals on Amazon or elsewhere.  It appears to be pricing out at about $30 more than the MUS 4.3 currently, which is very comparable, except it does not directly display any information relating to time remaining in the charge cycle before you can attempt to drive your car.

As noted earlier, I can attest to the CTEK’s build quality having dropped one of my units to the garage floor with zero damage (well, other than I felt pretty dumb for doing it).  The units are weatherproof and approved for outdoor use.  They operate properly from -4 degrees F to +122 degrees F.  The wiring as well as Comfort Connect has never failed on my units over 15 years of use.  They also have built in back-up in the event that power is interrupted. The unit will resume at the step it was at and for the type battery you selected in mode (regular or AGM).  Also, they will warn you if you attempt to attach with incorrect polarity and prevent any circuit damage.

As to which model to buy, it really depends on your intended application. If you are looking for a highly reliable charger/maintainer, one that you can set and forget about, a CTEK unit will serve you well.

If you have a question, please feel free to ask!  Happy charging.

Product Review- Dash Cameras with Navigation: The evolution of Man’s need for direction & documentation.

The Evolution of Man’s Need for Direction and Documentation.

All of us have to some degree experienced the increasing reliance on electronic gadgets to help us get from A to B, especially if we don’t know exactly where B is.  Along the way paper maps, TripTiks, and (often as a last resort) calling or stopping and asking for directions, has given way to dependence on electronic navigation units.  These range from apps on smart-phones, to dedicated free standing navigation units such as Garmin and Magellan, to OEM built-in units in our cars.  Each of these options typically has its own strengths and weaknesses.

More recently, at least in the United States, dash cameras have started to come into their own.  Similar to navigation units, some are now OEM equipment built-in cars, while more commonly, they are free standing units.  There are three primary reasons for their increasing popularity: a desire to share images of a car trip, to have a record of driving on a high-performance track or circuit for learning and review, and documentation in the event of an accident or road rage.

In this review, I look at the latest units from two of the key navigation players, Garmin and Magellan, who have combined units housing both navigation and dashcam capabilities.  This is the first of several ongoing reviews I am doing on these units.  Both manufacturers are providing their respective units to me for review.

In theory, there are some real advantages of combining both navigation and dashcams into one unit, not the least of which is fewer wires and a smaller combined footprint resulting in less blockage of view out the windshield.  While we know they do a very good job providing navigation, the key question is how well do these units do in accomplishing both tasks?  To provide a comparison for the image quality, a pure dash cam unit is included.  I am using dash cams from Papago, a leader in the field of after-market dash cams, and one that has proven itself in prior testing I’ve conducted.

Initial test results:

Here are “raw” (no post-shoot software enhancement) still images generated by each unit at virtually the same time.

From the Garmin

 

From the Magellan

IMG170617-152651F

From the Papago

JWDaum (3 of 2)

You can see that all units adequately capture the scene and the license plate on the vehicle directly in front is certainly legible.  They also document the GPS coordinates, time and mph.  The image in the Garmin is slightly less wide than the Magellan, resulting in objects being slightly closer.  The captured colors, while slightly different for each unit, are close enough to be a non-issue.  On close inspection, the Magellan has a slight edge on sharpness of the image and matches the Papago.

One other thing to note is that the Magellan also captures part of its window attachment, as can be seen in the upper left corner of the image.  While there may be a way to configure the attachment component so this doesn’t happen, it wasn’t intuitively apparent.  Both units were placed on the windshield in a manner that replicated the typical location, especially if you were intending to use the navigation function of the unit while driving.  Here is the set up used:

JWDaum (1 of 4)

Another point to note is that both units picked up reflections from the dash interior.  It would have been possible to reduce or minimize these reflections by moving the attachment point on the windshield, however, again, these were placed where a typical driver would place them, so as to easily view the navigation information and also, to ensure that the unit did not block any critical forward vision.

Here is a second example of still shots generated by the respective units (each has a touch button to ‘snap’ a still shot independent of whether the unit is recording video at the time).

From the Garmin:

GRMN0002

From the Magellan

IMG170617-153150F

From the Papago

2017_0517_143138_006-1

The dash reflection is apparent in all units, but not to the point of reducing the value of the documentation.  When I enlarged each of these, you could not only read the license plate of the white car, but also the plate on the silver/gray truck.  As before, the Magellan is slightly sharper than the similar image on the Garmin, but the best image is from the Papago.

While the day time images would be very good for any incident documentation, that was not the case with the still images captured at night.

Here is the Garmin:

GRMN0014

And the Magellan

IMG170617-202512F

And here is the Papago

JWDaum (2 of 2)

No unit was able to effectively compensate for the high dynamic light range between the ambient light and the reflected headlight, rendering it impossible to read the license plate off of the car immediately in front (possibly some post editing software magic would enable the reading of the license plate).

It should be pointed out however, a different vehicle (different type of head lights and different size vehicle) can have a better outcome under night driving situations with these same units.  For example, here is an image from the same Papago S30 in a sports car (the vehicle used in the current tests was a full-sized sedan)

3 S30

You can see that the license is fully legible from this perspective.

Now let’s look at comparative videos.

This first set shows daytime MP4 output and demonstrate how the dash cam could provide documentation in the event of an incident.  Shortly after the respective videos start, you’ll see on the left side of the screen a car start to drift into my lane.  If the car had hit me, or caused me to stop abruptly, the video would document several factors including my speed, the fact I was driving in my lane at the time of the incident, and the car entering into my lane.  This units all have microphones (that you can turn off), that capture potentially supporting evidence like a horn, or turn signal.

First is from the Garmin:

 

Here is the Magellan:

Here is the Papago:

All three units provide reasonable quality videos sufficient to document an incident, should it be necessary.  There are minor differences in the quality of the three units, and noticeable in the Magellan only, is uncorrected image shake.

This next set shows nighttime comparative videos.  As noted in the still shots, you cannot read most license plates resulting from the high dynamic range contrast of the reflective license plate versus the surrounding images.  However, you can easily make out the type of vehicle, the traffic light colors, etc., so if an incident occurred you would be able to document your vehicle’s position within its lane, speed, and right of way.

First is from the Garmin:

Here is the Magellan:

And here is the Papago:

A few words about the navigation function of the two hybrid dash cams.

Both of these companies have been producing nav based units for years and have it down pretty well by this point.  Each has earned its camp of followers.  The directions, visual guidance including automatic map enlargement at pending turns or divides on highways, ease of finding establishments including entertainment, food, gas stations, as well as emergency information such as police stations and hospitals, have greatly improved with the latest iterations of software.  A real plus of these units (in most cases) is the free lifetime map and software updates.   Additionally, the latest units are offering live traffic updates and automatic rerouting.

 

JWDaum (3 of 4)

Both offer routing with similar options, on-the-go quick course recalculating, and reasonable good audible call outs of directions.  Similarly, each has updatable points-of-interest (entertainment, food, gas, etc.).  However, one big difference is that the Garmin allows either manual input of address location or voice command input, whereas Magellan only has manual input.  This is an important difference, both from a convenience and safety perspective.  It is much easier to use the voice command (which is pretty good in terms of recognition) in my opinion even when not driving, and critical to have when you are driving.

Conclusions and recommendations

If your car has a built-in navigation system and you are satisfied with it, then there probably isn’t much logic in getting a combination nav and dash cam unit.  However, with the increase in red-light runners, distracted drivers, and the like, I highly recommend adding a dash cam to your vehicles.  If that is your inclination, the Papago units are worth considering.  They have some of the best cameras and reliability of ones I have tested.  They have differing levels of bells and whistles, so you will need to explore and find the one that suits your needs.  Please see details at the end of this review for highlights across the Papago units.

If your vehicle has a OEM nav system that you are less than satisfied with (don’t like having to buy expensive map updates, or its a complex process to input an address, etc.) or lacks one completely, then I’d recommend considering the hybrid Garmin line.  While the Magellan was certainly capable, the fact that it currently does not include the ability to accept voice commands takes it out of contention.

One additional plus of an aftermarket unit that combines nav and a dash cam, is that you can easily transfer it from vehicle to vehicle, if you have more than one, and also take it with you when you travel to use in your rental vehicle.

Final thoughts for future improvements on combo-dash cam/nav and dash cam only units:

I would like to see a larger rechargeable built in battery so that the unit could turn on and record a bump or impact while the vehicle was parked (and powered off).  Most vehicles today have their accessory outlets power down shortly after the vehicle is turned off rendering these units ineffective.  Even if you have an accessory outlet that remains live when your vehicle is powered down, you probably don’t want a dash cam potentially draining down your battery.  A rechargeable independent power supply in the unit would get around this. Since such an occurrence would hopefully be rare, the battery would need to have perhaps a 15 or so minutes reserve for practical purposes.

Many units come with ‘driver assistance safety features’ such as the ability to alert you that the car in front has started moving (for example after stopping at a light or stop sign), a reminder to turn on your head lights at dusk, driver fatigue alarm, forward collision warning, lane departure warning, and in the ability to recognize and warn you of an approaching stop sign.  Personally, I found these more of a distractor than a safety feature and turned them all off, except the stop sign recognition.  It will beep and turn on/show a picture of a stop sign on the rear display as you come up to it (even if you have the display turned off as I did).  However, in the units I tested, it failed to recognize at least half of the stop signs I encountered.  I’d rather see improvements in dynamic range, reduction of dash glare, and making quick attachment and removal (leaving the windshield component in place) a priority, and losing the driver assistance features.

Many of these units come with a hardwired 12-volt accessory plug.  Many vehicles today don’t have multiple accessory plugs (at least up by the driver).  Often drivers are already using the sole accessory outlet to power a radar detector or charger for their phone.  It would make more sense to have these units power off of a USB connection, since cars typically have several of those.

Additional detail on each unit tested:

Garmin Drive Assist 51 LMT-S

JWDaum (35 of 7)

Pros:

  • Very easy to set up
  • Voice command works well
  • Easy to read with a quick glance
  • has “live traffic”
  • has WiFi built in for updates
  • can be paired to your Garmin smartwatch
  • Incident Notification: When the unit detects an incident, the device can send an automated text message to a designated contact in 60-seconds. The message is sent from a third-party service, not from your phone, and includes your name and a pre-selected message. If you wish to cancel the notification, you can cancel it within the 60-second window. Incident Notification requires a connection to Smartphone Link, an active mobile data connection, and can be disabled if desired.
  • Travelapse: The Travelapse feature captures video frames at a set interval (one frame for each mile you travel, for example), and creates a fast-motion video of your trip. The device sets the distance interval automatically, based on the length of the route and the space available on the memory card. The unit continues to record regular dash cam video while recording a Travelapse video.
  • The “Where Am I?” feature gives you instant access to important information in case of an emergency. When you touch the vehicle icon on the map screen, the “Where Am I?” feature provides the coordinates (including elevation) of your current position, plus the nearest address and intersections. There are also buttons to help you locate the nearest hospitals, police stations, and gas stations. You can also save the location for future reference.

Cons:

  • When mounted where you would normally mount to have access to routing, the camera catches windshield internal reflections.  Would like to see some form of lens shield to prevent this.
  • Would like a quick release from windshield mount that doesn’t change the unit’s position on the windshield (so you don’t have to re-align camera). Some other Garmin non-dash cam units have a magnetic mount from the unit to the windshield so you can leave the mount and easily pull off the unit without potentially altering the alignment.

Magellan RoadMate 6630T-L

Copyright JwDaum-1

Pros:

  • The unit comes boxed with a Quick Start Guide, 8gb micro card and reader, the components to attach it to your windshield (effective suction cup), and a 12 volt accessory plug and mated USB power cable.
  • You will want to set the unit up at your home, so that you can log onto your WIFI for the normal updates to the maps and software.
  • Once set up, the unit is pretty intuitive and easy to use. However, there is no voice command for inputting addresses, you have to manually use the touch screen

Cons:

  • No voice command interface.
  • When mounted where you would to be able to use map/routing, the camera catches its own mounting bracket (can be seen in the upper left part of videos) .
  • (minor) The unit has a red led power light on the upper left side of the front. This is OK during the day, but an annoyance during the night.
  • Static cover on unit tells you to charge it for 2-4 hours before using, but unit only comes with a 12 volt accessory plug and mated USB cable. The included Quick Start Guide does not mention that you can do this using a power pack like Go Puck©, or your computer USB (however, using the computer will be a relatively slow charge), or by using a AC adapter (not supplied).  The full downloadable User Manual does mention that you can use an AC adapter.  I placed a call to customer support and quickly got through.  The very professional tech said you can us power packs, computers (again, noting that it will be slower) or AC adaptors in addition to the 12 volt accessory plug supplied with the unit.
  • Voice sounds tinny. Though this unit may have had a cracked board, since it also randomly lost power.
  • Doesn’t appear to have any image stabilization software, note shake in images

Papago

JWDaum (36 of 7)

As noted earlier, Papago has a variety of dash cams with somewhat different options.  All are very good dash cams, so the decision as to which one is best depends on your needs.  Tested and pictured above include the 760, 520, 30G and S30.

All units include lifetime update on software, removable microSD memory cards, a set of driver alerts such as stop sign recognition, shock/impact auto save recording, etc.  Also all units operate properly in temperature ranges from 14 degrees up to 149 degrees.  This upper range is impressive, since many competitive dash cams malfunction in the higher temperature ranges (of a windshield fully exposed to the sun).

Here are the highlights of the 4 units tested:

GoSafe 760: This is one of their more advanced multi-purpose units.  It comes with a forward facing wide140 degrees F2.0 camera in the main unit and a separate rear (or side) facing 120 degrees F2.4 camera.  It also has connections for their optional GPS antenna (for adding GPS coordinates overlay to recorded images) and their optional tire pressure monitoring D10E unit.  This unit would probably be best suited for an older car which doesn’t have built-in tire pressure monitoring, and/or individuals who want to document both forward and rear (or side) views simultaneously.

While this offers an impressive array of options, one thing to consider is all of the options and the additional camera require physical connections to the main unit.  So, if you are using the rear camera, GPS and tire monitoring systems, you will have four sets of cords attaching to the main unit.  Unless you plan on trying to tuck some of these in the header or elsewhere, that is going to be pretty messy in your vehicle.

GoSafe 520: This unit has their widest lens at 146 degrees, F2.  It also offers the highest quality at 2K 21:9 ratio videos.  It does not have built-in GPS, nor offer the option of using their GPS or TPMS accessories like the 760 does.  This unit would be ideal if you want to capture your driving trip, track experience, etc. to share with others.  It also, of course, will provide excellent traffic incident pictures.

GoSafe S30: This unit has 135 degrees capture lens with an F1.9 sensitivity.  It also offers the option of using their GPS and tire pressure monitoring systems.  It offers a very small ‘foot print’ on your windshield and is unobtrusive, unless you opt to attach the GPS and/or TPMS.  Then, similar to 760, you are going to have two or three sets of wire connections to this small unit.

GoSafe 30G: This is one of Papago’s latest units and has a wide 140 degrees F1.9 lens.  It has the GPS built in, but does offer the option of attaching the TPMS.  If your vehicle already has a decent navigation system, and TPMS, then this would be the unit to consider.  It is relatively small, would have just the power cord (unless you added the TPMS) and produces high quality videos, time, date and GPS coordinates stamped.

 

InSight© Product Reviews

A bit of background:

P1010884I have always been inquisitive of how things worked, coupled with a high level of mechanical ability.  Over the years, friends have frequently relied on my research and evaluations to help them with product decisions.  Several encouraged me to share my write-ups in the ‘public’ arena.

I am adding a new section to my blog which will include practical product reviews.

No compensation is received for any of my reviews.  When I started this, and published reviews, the items were purchased directly by me. Of late, most products have been provided at no charge by the manufacturer to me for review.

When possible, I try to compare and review comparable products since I think this provides a better benchmark.

If you have questions about one of my reviews, please use the contact form to reach me.  You will also find an area for commenting following each review.  I look forward to hearing from you and hope, where applicable, the information will assist you in making purchasing decisions.

Thanks for stopping by!

The first review Dash Cameras with Navigation: The evolution of Man’s need for direction & documentation http://wp.me/p81CBz-99

Here is a review of a car battery charger/maintainer:  “You’ll get a charge out of this.https://insight.daumphotography.com/2018/11/11/youll-get-a-charge-out-of-this/

Here is a review of products to assist in detailing and wrenching: https://insight.daumphotography.com/2019/03/23/product-review-detailing-and-wrenching-aids/

Autonomous Vehicles: Part 2

This is the second blog on Autonomous vehicles, for the introduction and first part please see Autonomous Vehicles Part 1 .

Autonomous vehicles- the major potential ‘cons’:

Connectivity:

The sine qua non for the CAV (connected autonomous vehicle) is communications.  It is at the same time its strength and, borrowing from Greek mythology, its Achille’s heal.  To function, autonomous vehicles must rely on a tremendous amount of inter and intra connectivity.  All of the on-board sensors (lidar, radar and cameras, engine parameters, lane departure, etc.) have to flawlessly communicate with one another, as well as vehicle to vehicle, and communicate with traffic management (lights, flow, emergency vehicles, etc.).

jdaum-1

Sounds great in theory, but in actuality this is astoundingly difficult to pull off.  Keep in mind, this connectivity has to function flawlessly all of the time.  There was a bit of irony at CES 2017 in that every presentation I attended experienced a problem at least once with the remote presentation control unit communicating correctly with the media controller equipment.  And this was connectivity at its very basic level!  On a more complex level, there was Faraday’s problem during the press review where their car failed to accept the command to self-park.

Obviously, you can’t have a break in connectivity or the autonomous vehicle will come to a complete (unintended) halt (hopefully), and in doing so will become a potential accident instigator for both other autonomous and non-autonomous vehicles.  What level of redundancy will be sufficient to prevent a loss of connectivity?  While it seems feasible that intra- vehicle (between its numerous components necessary to have an autonomous system) redundancy is reasonably surmountable, what will be necessary to ensure the inter-vehicle, and traffic management, along with live web connectivity, is flawless?

Simultaneously with ensuring the continuous flow of connectivity, there are still two large problems to solve: All communication has to be hack proof (we have seen the videos of someone remotely gaining access to a vehicle’s electronics via one of the communication channels, and taking over one or more of the vehicles systems- acceleration, braking, steering.  Hackers have demonstrated this remotely on cars ranging from Jeeps to Teslas.).  Further a great deal, if not all, of the information has to maintain the privacy of the vehicle (and its occupants).

Additionally, complicating the connectivity issue is what was tagged “Babel” at the CES 2017 A United Language for the Connected Car session.  The general definition of babel is a confused noise, typically made by a number of voices.  Unfortunately, it applies to the current status of proprietary software designed for many of the components needed for a connected vehicle.  The herculean challenge is to get a universal open language used across all components/systems for autonomous vehicles.  Beyond the current Babel-of-software-language is the growing quagmire of state and federal regulations aimed at controlling autonomous vehicle access to our roads.  Currently, an autonomous vehicle approved by nascent laws in one state, may not be able to continue driving when it crosses into an adjacent state.  For example, while an autonomous car can be driven in Nevada, it can’t legally continue into nearby Oregon or Idaho, and if you are in an autonomous car in Florida, you could not continue on into any of its adjoining states.

Societal Impact:

The RAND Corporation pointed out in their 2016 publication Autonomous Vehicle Technology: A Guide for Policymakers, that rather than autonomous vehicles reducing congestion on our roads, they may, in fact, increase congestion.  This conclusion is based on the reduced transportation costs borne by individuals.  For example, the cost of automotive insurance shifts from the owner to that of the manufacturer of autonomous vehicles.   This, combined with increased access (potentially no need for individual driver licenses), could see a substantial surge in the number of individuals travelling at the same time.  Of course, it could be moderated by increased reliance on mass vs low occupancy vehicles.  The elimination of the hassle often associated with finding a parking space (your autonomous vehicle could drop you off and then continue on to a remote parking area, awaiting your request for it to comeback and pick you up) may also contribute to a significant increase in willingness to ‘hop’ into your vehicle and head to a dense, high-use, urban area.

What are the implications for the potential loss of transportation sector jobs, their respective incomes and loss of tax revenues from reduced or eliminated parking garages, meters, etc.?

And while most believe that autonomous vehicles (or even semi-autonomous) will significantly reduce the number of deaths caused by crashes, the is one part of our society that has depended on these deaths- that of organ donations.  “It’s morbid, but the truth is that due to limitations on who can contribute transplants, among the most reliable sources for healthy organs and tissues are the more than 35,000 people killed each year on American roads (a number that, after years of falling mortality rates, has recently been trending upward). Currently, 1 in 5 organ donations comes from the victim of a vehicular accident.” [From Future Tense: The Citizen’s Guide To The Future. Dec. 30 2016]  The potential impact is catastrophic on an already stretched organ donation system.  “All of this has led to a widening gap between the number of patients on the organ wait list and the number of people who actually receive transplants. More than 123,000 people in the U.S. are currently in need of an organ, and 18 people die each day waiting, according to the Department of Health & Human Services. Though the wait list has grown each year for the past two decades, the number of transplants per year has held steady in the last decade, at around 28,000.”[ Fortune: If driverless cars save lives, where will we get organs? By Erin Griffith Aug 15, 2014].

Moral Dilemma:

You may be familiar with the paradox of Buridan’s ass.  As the story goes, a hungry donkey was placed equidistant between two identical bales of hay.  Unable to choose which one to go to, the donkey died of starvation.  The movement towards autonomous vehicles has at least two analogous conundrums: how many deaths by autonomous vehicles is an acceptable number of deaths, and, who is going to have the final approval of the algorithms designed to make a decision for an autonomous vehicle as to who should be sacrificed when a choice has to be made between certain death in a pending accident.  The analogy is that if we can’t reach agreement on both of these issues, the movement towards autonomous vehicles may come to a halt.

Even though these two conundrums are inextricably related, let me briefly explore each separately.  We know factually that autonomous vehicles can lower deaths currently associated with driver error, and that the number won’t rapidly be reduced to zero.  Using the approximately 32,000 automotive related deaths per year (cited in my Part 1), what percent reduction would be ‘acceptable’?  Would a 50% reduction resulting in 16,000 fewer deaths per year, but also 16,000 remaining deaths per year by autonomous vehicles be OK?  Would it take a 75% reduction resulting in 8,000 deaths per year by autonomous vehicles to be considered OK?  The consensus appears to be that while the astounding number of 32,000 deaths per year caused by human error behind the wheel, isn’t good, we seem to have ‘accepted’ it without demanding immediate action on a national or global level.  However, few believe we would be as complacent if the news was filled with 16,000 or even 8,000 deaths per year as a result of autonomous vehicles.

Recently a number of articles have appeared highlighting the other conundrum: algorithms being designed to decide who lives and who dies when the outcome of a pending accident is unavoidable.  For example: “A self-driving car carrying a family of four on a rural two-lane highway spots a bouncing ball ahead. As the vehicle approaches a child runs out to retrieve the ball. Should the car risk its passengers’ lives by swerving to the side—where the edge of the road meets a steep cliff? Or should the car continue on its path, ensuring its passengers’ safety at the child’s expense?” [Driverless Cars Will Face Moral Dilemmas by Larry Greenemeier, June 23, 2016, Scientific American] Or:” Imagine you’re behind the wheel when your brakes fail. As you speed toward a crowded crosswalk, you’re confronted with an impossible choice: veer right and mow down a large group of elderly people or veer left into a woman pushing a stroller.” [Driverless cars create moral dilemma. By Matt O’Brien, The Associated Press January18, 2017].  Who should be entrusted with developing and ultimately approving the necessary algorithms?  Shall there be one algorithm for all autonomous vehicles globally or will there have to be country/culturally specific versions?

Real World Impediments To Fully Autonomous Vehicles:

At this point, autonomous vehicle developers have not been able to handle several frequent occurrences typical to our driving environments.  If a fully autonomous car comes upon road construction, it doesn’t know how to ignore the programming that tells it not to cross a double yellow line, or purposely drive into a temporary lane without lane markers.  It is basically programmed to shut down- or, in Nissan’s case, phone ‘home.’  At CES 2017, Carlos Ghosn, Chairman and CEO of Nissan, during his keynote speech said they are planning on having a centralized station staffed 24/7, to handle “edge” circumstances for their autonomous cars.  In logic, the human contacted by the autonomous car would review the information available from the on-board sensors, and map an alternative route or action.  It is unclear how would this approach be able to scale up instantaneously, for example, when a large section of a country has an extreme disrupter such as flooding, earthquake, etc.?

Similarly, autonomous vehicles cannot negotiate a dirt road, or a road that lacks up-to-date gps mapping.  Neal Boudette in his article “5 Things That Give Self-Driving Cars Headaches” points out, autonomous cars will have a very hard time with unpredictable reckless drivers on the same road in a non-connected vehicle [New York Times, June 4, 2016].

Current thinking of many developers, is to require a (human) driver to serve as ‘back-up’ in those circumstances where the autonomous or semi-autonomous vehicle encounters a situation it isn’t programmed to handle.  Unfortunately, there are severe limitations to how well most drivers would be able cope with such an unexpected/instantaneous hand-off (one doesn’t have to look any further than the tremendous increase in accidents attributable to drivers distracted by texting).  The biggest problem is with a lack of sufficient reaction time even at moderate speeds, let alone highway speeds.  This is further complicated by the well documented fact of vigilance decrement.  The longer the autonomous vehicle is properly handling the driving, the less attentiveness and readiness the ‘back-up’ human will have to properly respond to the hand-off.

In order to succeed, there is going to have to be a significant educational effort of the current, and potential, driving public during the transition period when autonomous and semi-autonomous vehicles share the road with traditional non-connected vehicles. Part of this education will need to focus on the trust issue confounded by demographic and age differences in acceptance.

In some ways, many of the concerns today are parallel to those around one of the earliest autonomous vehicles designed to transport people- the elevator.  Original elevators were relatively dangerous vertical transport platforms, operated by a trained elevator operator.  As safety concerns were addressed, elevators vastly improved including having doors, fixed stopping points, redundant mechanisms to prevent free fall, etc.  Shortly after the turn of the twentieth century push buttons were introduced that would permit selecting a specific floor and the elevator to proceed automatically to that floor.  However, it wasn’t until after World War II -forty years after automation- that elevator operators were no longer placed in most elevators.  One of the main reasons for the slow transition from manually operated to fully automated elevators was people were fearful of getting into an elevator that did not have a human operator.  How likely are you to entrust your life to the newest mode of autonomous vehicles?

Autonomous Vehicles Part 3 will explore: What is next?  Is the light at the end of the tunnel daylight or an oncoming train?